Received 31 May 2005 Accepted 2 June 2005

Online 10 June 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.094 Data-to-parameter ratio = 26.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Propane-1,3-diaminium bis(dihydrogenarsenate)

The title compound, $(C_3H_{12}N_2)[H_2AsO_4]_2$, contains a network of propane-1,3-diaminium cations and dihydrogenarsenate anions [mean As-O = 1.682 (2) Å]. The crystal packing involves anion-to-anion O-H···O hydrogen bonds, resulting in double chains of dihydrogenarsenate tetrahedra. Cation-toanion N-H···O hydrogen bonds generate a three-dimensional overall structure. One C atom occupies a special position with twofold symmetry.

Comment

The title compound, $C_3H_{12}N_2^{2+}\cdot 2[H_2AsO_4)]^-$, (I), (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003*a*,*b*,*c*; Wilkinson & Harrison, 2004; Todd & Harrison, 2005*a*).

The $[H_2AsO_4]^-$ dihydrogenarsenate group in (I) has normal tetrahedral geometry [mean As-O = 1.682 (2) Å], with the protonated As1-O1 and As1-O2 vertices showing their expected lengthening relative to the unprotonated As1-O3 and As1-O4 bonds, which have formal partial double-bond character (Table 1). The propane-1,3-diaminium cation, which is generated by twofold symmetry from the atoms of the asymmetric unit (C2 occupies a special position with site symmetry 2), shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of cation-to-anion N– $H \cdots O$ and anion-to-anion $O-H \cdots O$ hydrogen bonds (Table 2). The $[H_2AsO_4]^-$ units are linked into polymeric

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I), showing 50% probability displacement ellipsoids (H atoms are drawn as spheres of arbitrary radii and the hydrogen bond is indicated by dashed lines). Symmetry code as in Table 1.

Figure 2

Detail of a hydrogen-bonded (dashed lines) dihydrogenarsenate double chain in (I). Symmetry codes as in Table 2.

Figure 3

Projection of the unit cell contents of (I) on to (010). Dashed lines indicate hydrogen bonds.

double chains (Fig. 2) propagating along [010] by way of inversion-symmetry-generated pairs of O2-H2···O4ⁱⁱⁱ and $O1-H1\cdots O4^{ii}$ bonds (see Table 2 for symmetry codes). The first of these bonds results in 'dimers' of dihydrogenarsenate tetrahedra, which in turn are linked into double chains by the second hydrogen bond. In graph-set notation (Bernstein et al., 1995), these bonding patterns correspond to $R_2^2(8)$ and $R_4^4(12)$ loops, respectively. This scheme results in every [H₂AsO₄]⁻ group in the chain forming two hydrogen bonds to its neighbours and accepting two hydrogen bonds from its neighbours. The As···Asⁱⁱⁱ (via O2-H2···O4ⁱⁱⁱ) and As···Asⁱⁱ (via O1-H1····O4ⁱⁱ) separations are 4.5325 (4) and 4.6549 (4) Å, respectively (symmetry codes as in Table 2).

The organic species interacts with the dihydrogenarsenate anions by way of three N-H···O hydrogen bonds [mean $H \cdots O = 2.00 \text{ Å}$, mean $N - H \cdots O = 158^{\circ}$ and mean $N \cdots O =$ 2.892 (3) Å], such that the [010] dihydrogenarsenate double chains are crosslinked in the a and c directions to result in a

three-dimensional network (Fig. 3). A PLATON (Spek, 2003) analysis of (I) indicated the presence of two short $C-H \cdots O$ contacts (Table 2) although their structural significance is not clear.

The hydrogen-bonded tetrahedral double chains in (I) are different from the motifs seen in related structures. In bis-(cycloheptylaminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005a) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003c), hydrogenbonded dimers of [HAsO₄]²⁻ units occur, with the dimers bridged into double chains by intervening water molecules. In piperidinum dihydrogenarsenate (Lee & Harrison, 2003b) and *t*-butylammonium dihydrogenarsenate (Wilkinson & Harrison, 2004), single chains of $[H_2AsO_4]^-$ anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium hydrogenarsenate monohydate (Todd & Harrison, 2005b), containing the same cation as (I) but prepared at higher pH, yet another hydrogenbonded chain motif occurs.

Experimental

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous H₃AsO₄ solution (10 ml) to result in a clear solution. A mass of plate- and slab-like crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_3H_{12}N_2)[AsH_2O_4]_2$	$D_x = 2.244 \text{ Mg m}^{-3}$
$M_r = 358.02$	Mo $K\alpha$ radiation
Monoclinic, $I2/a$	Cell parameters from 3458
a = 15.5563 (8) Å	reflections
b = 4.6549 (2) Å	$\theta = 2.7 - 32.5^{\circ}$
c = 15.0454 (7) Å	$\mu = 6.33 \text{ mm}^{-1}$
$\beta = 103.399 \ (1)^{\circ}$	T = 293 (2) K
$V = 1059.83 (9) \text{ Å}^3$	Plate, colourless
Z = 4	$0.50 \times 0.19 \times 0.03 \text{ mm}$

Data collection

Bruker SMART 1000 CCD 1899 independent reflections diffractometer 1667 reflections with $I > 2\sigma(I)$ (i) scans $R_{\rm int} = 0.044$ Absorption correction: multi-scan $\theta_{\rm max} = 32.5^{\circ}$ (SADABS; Bruker, 1999) $h = -23 \rightarrow 23$ $k = -7 \rightarrow 5$ $T_{\min} = 0.144, \ T_{\max} = 0.833$ $l = -22 \rightarrow 17$ 5128 measured reflections Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0677P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.094$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 1.02	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
1899 reflections	$\Delta \rho_{\rm min} = -1.49 \text{ e } \text{\AA}^{-3}$
71 parameters	Extinction correction: SHELXL92
H-atom parameters constrained	Extinction coefficient: 0.0037 (6)

Table 1

Selected geometric parameters (Å, °).

As1-03	1 6375 (17)	As1-01	1 7071 (17)
As1–O4	1.6669 (16)	As1–O2	1.7180 (18)
N1-C1-C2-C1 ⁱ	179.5 (3)		
Symmetry code: (i) $-x$	$+\frac{3}{2}, y, -z + 1.$		

Table 2	_	
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1-H1···O4 ⁱⁱ	0.83	1.82	2.608 (3)	159
O2-H2··· $O4$ ⁱⁱⁱ	0.90	1.74	2.603 (3)	161
$N1-H3\cdots O3^{iv}$	0.89	1.89	2.740 (3)	160
$N1-H4\cdots O4$	0.89	2.13	2.967 (3)	156
$N1-H5\cdots O3^{v}$	0.89	1.97	2.818 (3)	158
$C1 - H7 \cdots O2^{vi}$	0.97	2.48	3.389 (3)	156
$C2-H8\cdots O2^{v}$	0.97	2.52	3.482 (3)	174

Symmetry codes: (ii) x, y - 1, z; (iii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x, -y - \frac{1}{2}, z + \frac{1}{2}$.

The *I*-centred unit cell was chosen in preference to the *C*-centred setting (space group C2/c) to avoid a very obtuse β angle of 127° (Mighell, 2003). The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C-H = 0.97 Å and N-H = 0.89 Å) and refined as riding, allowing for free rotation of the -NH₃ group. The constraint $U_{iso}(H) = 1.2U_{eq}(carrier)$ was applied in all cases. The highest difference peak is 0.95 Å from O3 and the deepestdifference hole is 1.20 Å from As1.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (1999). *SMART* (Version 5.624), *SAINT* (Version 6.02A) and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
- Mighell, A. D. (2003). Acta Cryst. B59, 300-302.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Todd, M. J. & Harrison, W. T. A. (2005a). Acta Cryst. E61, m1024-m1026.
- Todd, M. J. & Harrison, W. T. A. (2005b). Acta Cryst. E61. Submitted
- Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.